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Abstraet--A semiquantitative theory of heat transfer in a heat-generating fluid within a closed volume is 
developed. The analysis is based on relationships derived from the condition of energy balance and on 
modern physical concepts of heat transfer processes in an energy-neutral fluid. Four main regimes and one 
asymptotic regime of heat transfer are singled out, which differ in the exponents of power in the expression 
relating the Nusselt number, Nu, and the modified Rayleigh number, Ra~. In the asymptotic limit, with 
Ra~ J/32 >> 1, heat transfer to the upper horizontal part of the boundary and the curved part of the boundary 
facing downward obeys dependences Nuup ~ Ra 7/32 and Nud, ~ Ra~/4, respectively. In the range of values 
of Rai which is of interest with regard to the safety problem of the nuclear power engineering the established 
theoretical correlations are in good agreement with the experimental data. © 1998 Elsevier Science Ltd. 

1. INTRODUCTION 

When scenarios of core melt accidents at NPPs are 
analyzed, and their consequences predicted, there 
arises a problem of core melt retention in the reactor 
vessel. In this connection, it is highly important to 
study the processes of convective heat transfer in a 
heat-generating fluid within a closed volume. These 
processes are investigated by means of experimental 
and numerical [1] [2] modeling. Although the studies 
based on numerical methods have been quite success- 
ful, any further progress along this path towards high 
rates of heat release which correspond to real situ- 
ations runs into considerable difficulties. Therefore, it 
would be useful to obtain an insight into the physical 
nature and qualitative correlations of possible heat 
transfer regimes in a heat-generating fluid. 

The aim of this study is to construct a qualitative 
picture of heat transfer in a heat-generating fluid 
within the entire power range of interest, proceeding 
from the modern physical concepts of convective heat 
transfer. In Section 2, a set of relationships is derived 
from the condition of energy balance. Section 3 is 
devoted to semiquantitative correlations of heat trans- 
fer corresponding to natural convective flow regimes 
which change depending on the rate of heat release. 
Also in this section the results of the study are com- 
pared with the known experimental data. 

2. ENERGY BALANCE CONDITION 

Let us consider heat transfer in a heat-generating 
fluid occupying a volume V which has a height H and 
a rigid isothermal boundary S shown schematically in 
Fig. 1. 

A horizontal plane passing through a point which 

corresponds to the maximum value of the time-aver- 
aged temperature of the fluid divides the entire volume 
V into two parts of approximately the same height. 
Due to the inverse distribution of temperature a situ- 
ation close to the conditions of Rayleigh-Benard (RB) 
convection arises in the upper part, V_, having a 
height H+. The corresponding flow of the fluid pro- 
vides heat transfer to the upper horizontal part of the 
boundary having an area S,p. Heat transfer to the 
curved part of the boundary facing downward, and 
having an area Sd,, is due to the presence of a bound- 
ary layer (BL), which is thin in comparison with H 
and in which the fluid flows down. At such time, a 
stable stratified distribution of temperature appears 
inside the lower part V of the volume V 
(V_ = V -  V+) in the presence of a return upward 
flow of the liquid. 

The stationary condition of energy balance has the 
form : 

2AT F 
I d S N u  = Q V  S = Suo+Sd, (1) 
Js 

where AT = Tin,x- Ts is an excess of the maximum 
t e m p e r a t u r e ,  Tmax, within the volume V over the 
boundary temperature, Ts ; Q is power release density. 
Expressing these values through the Rayleigh number 
and the modified Rayleigh number we obtain the 
relationship 

m 
RaNu = Ral (2) 

in which 

m H 
Nu = ~ (SupNuup + SdnNUdn ) (3) 
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A aspect ratio of the V+ domain, 
A = D/H+ 

BL boundary layer 
D horizontal dimension of the V+ 

domain 
acceleration due to gravity 
height of the volume V 
height of the V+ domain 
height of the V_ domain 
thermal diffusivity 
Nussett number, Nu = (H/2AT)q  
Prandtl number, Pr = v/k 
power release density 
heat flux density to the boundary 
Rayleigh number, Ra = g~ATH3/vk  

modified Rayleigh number, 
Ral = go~QtlS/vk2 

Ract, Rac2, Rac3 critical values of Ra + in 
RB convection 

g 
H 

H+ 
H_ 
k 
Nu 
Pr 

O 
q 
Ra 
Ra~ 

NOMENCLATURE 

R.* 
RB 
S 
T 
Tma~ 

Ts 
AT 
V 

V+, V_ 
V. 

critical value of Ra in BL 
Rayleigh-Benard 
area of the volume V boundary 
fluid temperature 
temperature maximum value in the 
volume V 
temperature of the boundary 

volume occupied by fluid 
upper and bottom parts of volume 

Greek symbols 
ct thermal expansion coefficient 
fl, fl~, 7~, e power exponents in (5) 
2 thermal conductivity 
v kinematic viscosity. 

s~ 

,/ 

Fig. 1. Geometry of the problem. 

coefficients is outside the scope of the semiquantitative 
theory elaborated here. We assume that Pr ~> 1. Note 
that dependences (5) with constant exponent may hold 
true within limited variation ranges of the master par- 
ameter Ray depending on definite combinations of 
heat transfer regimes at the boundary sections S,p and 
San. When the regimes change, the power exponents 
also change (abruptly or gradually). 

Nui = dSNu,  i = up, dn. (4) 

Theoretical dependences Nui(Ra) and the cor- 
responding results of experimental and numerical 
modeling are usually expressed by power functions. 
Let us define power exponents flup, fld,, fl'Y,v' 7dn, and 
e through relationships 

Nui ~ Ra ~', N-u ~ Ra I~, Ra ~ R ~ ,  Nui  ~ Rail  

(5) 

Substitution of eqn (5) into eqn (2) leads to the 
establishment of the following important constraints 
between the power exponents : 

e = (1 + fl) -~ (6) 

(7) 
7i-- l+ f l "  

NOW we have to find power exponents ),.p, 7dn and 
disregarding numerical coefficients of the order of 

unity in eqn (5) as the determination of these 

3. SEMIQUANTITATIVE CORRELATIONS FOR 
HEAT TRANSFER 

In the analysis of heat transfer in a heat-generating 
fluid we will proceed from two analogies with heat 
transfer in energy-neutral fluids (i.e. fluids which do 
not have internal heat sources). The first analogy is 
based on the similarity between the processes occur- 
ring in the region V+ of the problem discussed here 
and RB convection. The second analogy is based on 
the similarity between boundary layers (BL) in heat- 
generating and energy-neutral fluids. The reasons 
which warrant such analogies are as follows. 

With Ra>> l, thermal resistance is mainly 
accounted for by narrow wall-adjoining layers of the 
fluid having a thickness much smaller than H. There- 
fore, referred to the unit area of the wall-adjoining 
thermal layer the rate of heat release in this layer is 
small compared to the density of the thermal flux 
passing through it and, consequently, heat release in 
these layers produces practically no effect on their 
structure and, accordingly, on the heat transfer 
characteristics. Additional proof of close similarity 
between convection in the region V+ of a heat-gen- 
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crating fluid and RB convection based on the available 
experimental data will be given elsewhere in this 
section. Let us recall the known characteristics of con- 
vective heat transfer in an energy-neutral fluid which 
are used as prototypes for a heat-generating fluid. 

RB convection corresponding to the horizontal 
layer of the fluid heated from below has the following 
heat transfer regimes differing in the values of 
exponent fiRS in the relationship NURB ~ RaB+ R", where 
Ra+ = Ra(H--* H+). With Racl < Ra+ < Rac2, there 
is a laminar flow with flRB = 1/4 [3]. With Rac2 
< Ra+ < Rat3, a so-called soft turbulence regime is 
realized, for which flRB = 1/3 [4]. With Ra+ > Rac3, 
the soft regime is replaced by a hard turbulence 
regime, for which flrtB = 2/7 [4]. Critical values of 
Racl, Rac2, Rac3 depend on the aspect ratio 
A = D/H+, where D is the horizontal dimension of 
the RB cell. With A >  1, R a c ~ ~ l O  3. If A ~ I ,  
Rac2 = 2" 105 and Rat3 = 4- 107 [4]. If A = 6.5, 
Rac3 ~ 104 [5]. These data suggest that with the values 
of A appreciably larger than unity, when Ra increases, 
a laminar flow in the RB cell directly changes to a 
hard turbulence regime, without passing through a 
soft regime. 

The vertical boundary layer in an energy-neutral 
fluid has two regimes. These are a laminar regime with 
flBL = 1/4 [6] and a turbulence regime with flBL = 1/3 
[7], where rise is the exponent in the relationship 
NUBL ~ Ra ~ .  The transition from one regime to the 
other corresponds to the critical value of Ra = Ra*, 
which depends on the Pr number. Theoretically, with 
Pr > 1, according to ref. [8] this dependence has the 
form Ra* ~ Pr 2. However, the numerical coefficient 
in this relationship can vary by one and a half orders 
of magnitude from experiment to experiment, and this 
may render the dependence of Ra* on Pr insignificant 
when the Pr number varies within a limited range. 

We further assume that each heat transfer regime 
in a heat-generating fluid is a combination of the 
regimes in the region V+ and in the boundary layer 
which correspond to the regimes in the prototype 
systems. Therefore, taking into account the definition 
of the Nu number we have : 

H ( H )  '-31JRB 
N u , p -  H----f Ra~+R" = \ Hf+,] RateR"' 

NUd, ~ Ra #"~. (8) 

Because the interface between the regions V+ and 
V_ corresponds to the maximum temperature within 
the volume V, the difference between the heights H+ 
and H_ is closely connected with the difference 
between Nuup and Nua,. In virtue of inequalities 

IflRB--flBLI << flBL, I--3flRB << 1 (9) 

[the second one conditions weak dependence on H/H÷ 
in the first relationship (8)] and owing to the fact that 
within the range of the greatest practical importance, 
Ral < 1016, the intervals, within which heat transfer 

regimes are realized with respect to the Ra~ number, 
are comparatively small, it can be considered that here 
H+ "~ HI2. Therefore, when recalculating boundaries 
of the intervals corresponding to various convective 
regimes from the prototype systems to the problem 
under consideration we can take Ra ~ 10Ra+. In the 
same range of values of the Ral number, due to eqns 
(3) and (5) the power exponent fl satisfies the relation- 
ship 

fl_//up + rid,2 -+ Iflup- fld,[2 (10) 

Taking into account the relationships (8) and (10) 
and proceeding from what has been said above con- 
cerning the characteristics of heat transfer in an 
energy-neutral fluid four main heat transfer regimes 
can be singled out in a heat-generating fluid with the 
following interval boundaries and characteristics [flow 
regimes in the region V+ and in BL, exponents fl, ~, Yi 
defined by relationships (5)]: 

I Ra~ ~) < Ral < Ra~2): laminar convection in V+ 
domain and in BL 

f l=0 .25 ,  ~=0 .8 ,  Yup=Tdn=0-2. (11) 

II Ra~ 2) < Ral < Ra~3): soft turbulence in V+, laminar 
BL 

fl = 0.29+_0.04, e = 0.775+0.025, 

7up = 0.263-t-0.008, ?d. = 0.195+_0.005. (12) 

III Ra~ 3) < Ra~ < Ra~4) : hard turbulence in V+, lami- 
nar BL 

fl = 0.27_+0.02, e = 0.79_+0.03, 

Y,p = 0.225_+0.004, Ydn = 0.197+_0.003. (13) 

IV Ra~4)< Ral < 102"Ra~4~: hard turbulence in V+, 
combination of laminar and turbulent flow regimes in 
BL 

fl = 0.31-+0.025, e = 0.765 + 0.015, 

~up = 0.218+_0.004, Yd, = 0.255__+0.005. (14) 

(the values of these exponents correspond to the end 
of interval IV). 

In accordance with the aforementioned charac- 
teristics of heat transfer in an energy-neutral fluid and 
taking into account the relationships (10), (5) and (6) 
the boundaries of regimes I - IV in (11)-(14) are defined 
as follows : 

Ra~ I) _~ 105, Ra~ 2) ~_ 15(Rat2) 1.25 

Ra~ 3) ~- 15(Rat3) 129, Ra~ 4) ~- 15(Ra.) 127, (15) 

The values of Ra~ 2) and Ra~ 3) depend on the aspect 
ratio A for the region V+ and the value of Ra~ 4) 
depends on the Prandtl number. At sufficiently high 
values of A the regime II may be absent altogether 
and, in this case, regime III directly follows regime I. 



1226 L . A .  B O L S H O V  et  al. 

Some uncertainty in the dependence of Ra* on the 
Prandtl number mentioned above affects the bound- 
ary value Ra~ 4~. For example, for water pools this 
value is equal to Ra~ 4~ _~ 2.5" 1013 [9]. 

Off all regimes, I-IV, regime IV has the greatest 
importance so far as the safety problem of the nuclear 
power engineering is concerned. In this regime the 
boundary layer changes from a laminar to a turbulent 
state. When Ra~ > 102. Ra~ 41, the turbulent section of 
the boundary layer becomes predominant. Taking 
into account numerical coefficients in the dependences 
Nu(Ra) for a laminar and a turbulent boundary layer 
of an energy-neutral fluid, the expression Nudn(Ra) in 
regime IV of a heat-generating fluid has the form : 

NUd,1 ~ 0.68Ral./4 +O.15[Ral/3- Ral/3]. (16) 

Within the flow readjustment interval of the bound- 
ary layer the rate of rise of the Nud. number depending 
on Ra~ increases. If, as before, we describe this depen- 
dence through the relationship of (5) the exponent 7dn 
will be a function Raj number corresponding to a 
logarithmic derivative of the expression (16). For  the 
value of the exponent ~d,1 averaged over the flow 
readjustment interval we have 

A In NUd,, 
~Td,- AlnRal  (17) 

where A In Nu,~, is change in the value of In Nu~n over 
the averaging interval from Ra~ 4~ to Ra~ 4) 
exp [A In Ral]. Taking Ral 4~ = 2.5" 1013, which is true 
for experiments with water, and A In Ra~ = In 10 ~ we 
obtain : 

]Tdn ,~, 0.36. (18) 

As the temperature maximum in the volume V cor- 
responds to the interface between the regions V+ and 
V_, with /~up ~//d,  and Ra~ growing, the interface 
shifts in the direction in which Tm,~ relatively 
decreases. Up to the values of Ra~ equal to Ra~ 4~ it 
takes place/~.p ~> /~n, and with the growth of Ra~ in 
this interval the interface slowly moves downward. 
After transition of the boundary-layer flow to a tur- 
bulent state fldn becomes higher than/~p and, as Ra~ 
grows still more, no changes in the flow regime are 
anticipated. This means that the interface is moving 
upward leading eventually to an asymptotic heat 
transfer regime : V+ << V, H+ << H. In this case, prac- 
tically all heat released in the region V+ is transferred 
through the upper section of the boundary, S,p. Then, 
on the basis of the relationships (5)-(8) and the con- 
dition of energy balance written separately for the 
region V+ we obtain : 

3 I 7 /¢=~, e = ~ ,  7~.=~, 7up=32~0.219. (19) 

These values of power exponents determine the cor- 
relations of the asymptotic heat transfer regime. The 
condition for realization of this regime has the form : 

RaF 1/32 << 1. (20) 

Now, let us compare the semiquantitative cor- 
relations established here with experimental results. 
The best known correlations of experimental data 
obtained from modeling heat transfer in the melt are 
as follows : 

Kulacki-Emara [10]: 

Nuup ~ Ra °227 2" 104 < Ral < 4.4.1012 (21) 

Steinberner-Reineke [11] : 

Nuup ~ R a  0233 

Nu,jn ~ Ra °19 107 < Ral < 3" 1013 (22) 

Jahn-Reineke [12] : 

Nuup ~ R a  °'23 

NUd, ~ Ra °18 107 < Ral < 5" 10 I° (23) 

Theofanous-Liu [13] : 

Nu~. ~ Ra °'27 1012 < Ral < 3" 1013 

N u d , ~ R a  °35 3" 1013<RaI<7"1014.  (24) 

Comparison of power exponents in these depen- 
dences with exponents 7,0, 7d° in (11)-(14) suggests the 
following conclusions. The experimental data con- 
cerning 7up indicate that, most likely, theoretical heat 
transfer regime II is not realized under the conditions 
of the experiments [10-13]. This conclusion is based 
on the following. As was mentioned above, with mod- 
erately high values of Ral H+ ~ HI2. On the other 
hand, in these experiments the ratio of the charac- 
teristic dimension of the volume V in the horizontal 
direction to the height H is of the order of 2. Therefore, 
the aspect ratio for the volume V+ is A ~ 4. In accord- 
ance with [5] this may lead to the disappearance of a 
soft turbulence regime in the volume V+. In this case 
one can say that there is good agreement between 
theoretical predictions (11), (13), (14) and exper- 
imental data (21)-(24) regarding the exponent 7up. 

The theoretical and experimental values of the 
exponent 7dn are in good agreement when 
105<Ra~< 10 ~. A substantial growth of this 
exponent when Ra~ > 3" 10 ~3, which was observed in 
the ACOPO experiment [13], may be due to the 
readjustment of the boundary-layer flow from a lami- 
nar to a turbulent state. Our value of ~d, ~ 0.36 (18) 
is in good agreement with the experimental correlation 
(24). 

In conclusion, we will again dwell on the question 
of whether it is possible experimentally to corroborate 
the analogy of heat transfer mechanisms in the region 
V+ of a heat-generating fluid and in RB convection. 
Heat transfer in a heat-generating fluid occupying the 
volume of a horizontal plane-parallel layer with a 
heat-insulated lower boundary and an isothermal 
upper boundary was modeled in the Kulacki-Emara 
experiment [10]. In this experiment the aspect ratio 
corresponded to 4 ~< A ~< 20. Considering that the 
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experiment [10] coincided with RB convection in 
respect of the geometry and assuming that there is an 
analogy between the heat transfer processes in both 
cases, from eqn (7) we obtain the following relation- 
ship between the exponent ~ = ~up for the experiment 
[10] and fl = flRB for RB convection : 

/•RB (25) 
"/up = 1 +flR~" 

The range of values of the Rayleigh number  [see 
eqn (21)] and the aspect ratio in the experiment [10] 
correspond to the conditions of a hard turbulence 
regime for which flRB ---- 2/7 [4]. By substituting this 
value in eqn (25) we obtain the theoretical value of 
the exponent 7up equal to yt~p~o~ _ 0.222. The fact that 
this value is close to the value 7~'p p = 0.227 from ref. 
[10] can be regarded as experimental proof of the 
analogy between heat transfer mechanisms in the 
region V+ of a heat-generating fluid and in RB con- 
vection. 

4. CONCLUSIONS 

The main conclusions from this study are as follows. 
We have determined semiquantitative correlations of 
heat transfer in a heat-generating fluid and singled out 
four main regimes and one asymptotic regime of heat 
transfer. In regime IV, the most important  one for the 
safety problem in the nuclear power engineering, the 
boundary-layer flow changes from a laminar to a tur- 
bulent state. This substantially increases the rate of 
growth of heat transfer depending on the Rayleigh 
number  in the curved part of the boundary which 
faces downward. In the asymptotic regime, when 

Ra(l/32<< 1, downward heat transfer prevails. The 
theoretical dependences obtained in the study are in 
good agreement with the experiment. 
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